Phytochrome regulation and differential expression of gibberellin 3beta-hydroxylase genes in germinating Arabidopsis seeds.

نویسندگان

  • S Yamaguchi
  • M W Smith
  • R G Brown
  • Y Kamiya
  • T Sun
چکیده

Despite extensive studies on the roles of phytochrome in photostimulated seed germination, the mechanisms downstream of the photoreceptor that promote germination are largely unknown. Previous studies have indicated that light-induced germination of Arabidopsis seeds is mediated by the hormone gibberellin (GA). Using RNA gel blot analyses, we studied the regulation of two Arabidopsis genes, GA4 and GA4H (for GA4 homolog), both of which encode GA 3beta-hydroxylases that catalyze the final biosynthetic step to produce bioactive GAs. The newly isolated GA4H gene was expressed predominantly during seed germination. We show that expression of both GA4 and GA4H genes in imbibed seeds was induced within 1 hr after a brief red (R) light treatment. In the phytochrome B-deficient phyB-1 mutant, GA4H expression was not induced by R light, but GA4 expression still was, indicating that R light-induced GA4 and GA4H expression is mediated by different phytochromes. In contrast to the GA4 gene, the GA4H gene was not regulated by the feedback inhibition mechanism in germinating seeds. Our data demonstrate that expression of GA 3beta-hydroxylase genes is elevated by R light, which may result in an increase in biosynthesis of active GAs to promote seed germination. Furthermore, our results suggest that each GA 3beta-hydroxylase gene plays a unique physiological role during light-induced seed germination.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phytochrome Regulation and Differential Expression of Gibberellin 3 b -Hydroxylase Genes in Germinating Arabidopsis Seeds

Despite extensive studies on the roles of phytochrome in photostimulated seed germination, the mechanisms downstream of the photoreceptor that promote germination are largely unknown. Previous studies have indicated that light-induced germination of Arabidopsis seeds is mediated by the hormone gibberellin (GA). Using RNA gel blot analyses, we studied the regulation of two Arabidopsis genes, GA4...

متن کامل

-Hydroxylase Genes in Germinating Arabidopsis Seeds

Despite extensive studies on the roles of phytochrome in photostimulated seed germination, the mechanisms downstream of the photoreceptor that promote germination are largely unknown. Previous studies have indicated that light-induced germination of Arabidopsis seeds is mediated by the hormone gibberellin (GA). Using RNA gel blot analyses, we studied the regulation of two Arabidopsis genes, GA4...

متن کامل

Phytochrome regulates gibberellin biosynthesis during germination of photoblastic lettuce seeds.

Germination of lettuce (Lactuca sativa L.) seed is regulated by phytochrome. The requirement for red light is circumvented by the application of gibberellin (GA). We have previously shown that the endogenous content of GA1, the main bioactive GA in lettuce seeds, increases after red-light treatment. To clarify which step of GA1 synthesis is regulated by phytochrome, cDNAs encoding GA 20-oxidase...

متن کامل

Contribution of gibberellin deactivation by AtGA2ox2 to the suppression of germination of dark-imbibed Arabidopsis thaliana seeds.

Gibberellin levels in imbibed Arabidopsis thaliana seeds are regulated by light via phytochrome, presumably through regulation of gibberellin biosynthesis genes, AtGA3ox1 and AtGA3ox2, and a deactivation gene, AtGA2ox2. Here, we show that a loss-of-function ga2ox2 mutation causes an increase in GA(4) levels and partly suppresses the germination inability during dark imbibition after inactivatio...

متن کامل

PIL5, a phytochrome-interacting bHLH protein, regulates gibberellin responsiveness by binding directly to the GAI and RGA promoters in Arabidopsis seeds.

Previous work showed that PHYTOCHROME-INTERACTING FACTOR3-LIKE5 (PIL5), a light-labile basic helix-loop-helix protein, inhibits seed germination by repressing GIBBERELLIN 3beta-HYDROXYLASE1 (GA3ox1) and GA3ox2 and activating a gibberellic acid (GA) catabolic gene (GA2ox2). However, we show persistent light-dependent and PIL5-inhibited germination behavior in the absence of both de novo GA biosy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 10 12  شماره 

صفحات  -

تاریخ انتشار 1998